设各项均为正数的等比数列{an}中,a1+a3=10,a3+a5=40. 数列{bn}中,前n项和(1)求数列{an}与{bn}的通项公式;(2)若c1=1,cn+1=cn+,求数列的通项公式(3)是否存在正整数k,使得++…+>对任意正整数n均成立?若存在,求出k的最大值,若不存在,说明理由.
如图,在四棱锥P-ABCD中,底面ABCD,底面ABCD是边长为2的菱形,,,M为PC的中点. (1)求异面直线PB与MD所成的角的大小; (2)求平面PCD与平面PAD所成的二面角的正弦值.
求函数的最大值.
在极坐标系中,曲线C的极坐标方程为,以极点为坐标原点,极轴为轴的正半轴建立平面直角坐标系,直线的参数方程为(为参数),求直线被曲线所截得的弦长.
求曲线在矩阵M对应的变换作用下得到的曲线所围成图形的面积.
如图,AB为圆O的切线,A为切点,C为线段AB的中点,过C作圆O的割线CED(E在C,D之间),求证:∠CBE=∠BDE.