当时,幂函数为减函数,求实数的值。
已知函数f(x)=2.(1)求证:f(x)≤5,并说明等号成立的条件;(2)若关于x的不等式f(x)≤|m-2|恒成立,求实数m的取值范围.
已知a,b为正实数.(1)求证:≥a+b;(2)利用(1)的结论求函数y= (0<x<1)的最小值.
已知函数f(x)=|x+3|+|x-a|(a>0).(1)当a=4时,已知f(x)=7,求x的取值范围;(2)若f(x)≥6的解集为{x|x≤-4或x≥2},求a的值.
设函数f(x)=|x-1|+|x-2|.(1)画出函数y=f(x)的图象;(2)若不等式|a+b|+|a-b|≥|a|f(x)( a≠0,a,b∈R)恒成立,求实数x的取值范围.
设不等式|x-2|<a(a∈N*)的解集为A,且∈A,∉A.(1)求a的值;(2)求函数f(x)=|x+a|+|x-2|的最小值.