已知点, 是平面内一动点,直线、斜率之积为. (Ⅰ)求动点的轨迹的方程;(Ⅱ)过点作直线与轨迹交于两点,线段的中点为,求直线的斜率的取值范围.
已知双曲线的离心率为,右准线方程为。(Ⅰ)求双曲线C的方程;(Ⅱ)已知直线与双曲线C交于不同的两点A,B,且线段AB的中点在圆上,求实数m的值。
如图,四棱锥PABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD。(1)证明:PA⊥BD;(2)设PD=AD,求二面角A-PB-C的余弦值.
如图,平面,,,,分别为的中点.(I)证明:平面;(II)求与平面所成角的正弦值.
如图,ABCD是正方形,O是正方形的中心,PO底面ABCD,E是PC的中点。求证:(1)PA∥平面BDE(2)平面PAC平面BDE
设数列的前项和为, (1)若,求; (2)若,求的前6项和;(3)若,证明是等差数列.