已知函数.(1)求的最小值;(2)若对所有都有,求实数的取值范围.
设函数,其中.证明:当时,函数没有极值点;当时,函数有且只有一个极值点,并求出极值.
已知定义域为[0,1]的函数同时满足以下三个条件:①对任意,总有;②;③若,则有成立. (1) 求的值;(2) 函数在区间[0,1]上是否同时适合①②③?并予以证明 (3) 假定存在,使得,且,求证:
求函数的最大值.
已知为正整数,试比较与的大小 .
已知数列{an}和{bn}满足:,其中λ为实数,n为正整数. (Ⅰ)若数列{an}前三项成等差数列,求的值; (Ⅱ)试判断数列{bn}是否为等比数列,并证明你的结论; (Ⅲ)设0<a<b,Sn为数列{bn}的前n项和.是否存在实数λ,使得对任意正整数n,都有a<Sn<b?若存在,求λ的取值范围;若不存在,说明理由.