已知函数 .(1)求函数的零点;(2)若方程在上有解,求实数的取值范围.
写出下列命题的否定,并判断其真假.(1)有些质数是奇数;(2)所有二次函数的图象都开口向上;(3)∃x0∈Q,x=5;(4)不论m取何实数,方程x2+2x-m=0都有实数根.
指出下列命题中哪些是全称命题,哪些是特称命题,并判断真假.(1)若a>0,且a≠1,则对任意实数x,ax>0.(2)对任意实数x1,x2,若x1<x2,则tan x1<tan x2.(3)∃T0∈R,使|sin(x+T0)|=|sin x|.(4)∃x0∈R,使x+1<0.
设有两个命题.命题p:不等式x2-(a+1)x+1≤0的解集是∅;命题q:函数f(x)=(a+1)x在定义域内是增函数.如果p∧q为假命题,p∨q为真命题,求a的取值范围.
已知p:方程x2+mx+1=0有两个不等的负根;q:方程4x2+4(m-2)x+1=0无实根,若p或q为真,p且q为假,求m的取值范围.
写出由下列各组命题构成的“p或q”、“p且q”、“p”形式的复合命题,并判断真假.(1)p:1是质数;q:1是方程x2+2x-3=0的根;(2)p:平行四边形的对角线相等;q:平行四边形的对角线互相垂直;(3)p:0∈∅;q:{x|x2-3x-5<0}⊆R;(4)p:5≤5;q:27不是质数.