网格中有一个小甲虫(),它喜欢吃牛粪,它又会把吃剩的牛粪滚成牛粪球()藏进仓库().规定向左为L,向右为R,向上为U,向下D,如:L1表示向左平移一格,D2表示向下平移2格.例如:要把左图中的所有的牛粪球推到最近的仓库里,可以编写程序:L1-R1-U2-D3-R2-U1,小甲虫就能把所有的牛粪球推到最近的仓库.你来试一试,可编写一个怎样的程序才能使小甲虫把右边图上的所有牛粪球推到最近的仓库里.(只需写出一种可行的程序即可)
(11·湖州)(本小题8分) 班主任张老师为了了解学生课堂发言情况,对前一天本班男、女生发言次数进行了统计,并 绘制成如下频数分布折线图(图1)。 ⑴请根据图1,回答下列问题: ①这个班共有▲名学生,发言次数是5次的男生有▲人、女生有▲人; ②男、女生发言次数的中位数分别是▲次和▲次; ⑵通过张老师的鼓励,第二天的发言次数比前一天明显增加,全班发言次数变化的人数的扇形统计图如图2所示,求第二天发言次数增加3次的学生人数和全班增加的发言总次数。
(11·湖州)(本小题8分) 如图,已知AB是⊙O的直径,弦CD⊥AB,垂足为E,∠AOC=60°,OC=2。 ⑴求OE和CD的长; ⑵求图中阴影部队的面积。
(11·湖州)(本小题6分) 已知:一次函数y=kx+b的图象经过M(0,2),(1,3)两点。 ⑴求k,b的值; ⑵若一次函数y=kx+b的图象与x轴交点为A(a,0),求a的值。
(11·湖州)(本小题6分)因式分解:a3-9a
如图所示,过点F(0,1)的直线y=kx+b与抛物线交于M(x1, y1)和N(x2,y2)两点(其中x1<0,x2<0). (1)求b的值. (2)求x1•x2的值 (3)分别过M、N作直线l:y=-1的垂线,垂足分别是M1、N1,判断△M1FN1的形状, 并证明你的结论. (4)对于过点F的任意直线MN,是否存在一条定直线m,使m与以MN为直径的圆相 切.如果有,请求出这条直线m的解析式;如果没有,请说明理由.