网格中有一个小甲虫(),它喜欢吃牛粪,它又会把吃剩的牛粪滚成牛粪球()藏进仓库().规定向左为L,向右为R,向上为U,向下D,如:L1表示向左平移一格,D2表示向下平移2格.例如:要把左图中的所有的牛粪球推到最近的仓库里,可以编写程序:L1-R1-U2-D3-R2-U1,小甲虫就能把所有的牛粪球推到最近的仓库.你来试一试,可编写一个怎样的程序才能使小甲虫把右边图上的所有牛粪球推到最近的仓库里.(只需写出一种可行的程序即可)
如图,在正方形网络中,△ABC的三个顶点都在格点上,点A、B、C的坐标分别为(-2,4)、(-2,0)、(-4,1),结合所给的平面直角坐标系解答下列问题: (1)画出△ABC关于原点O对称的△A1B1C1; (2)平移△ABC,使点A移动到点A2(0,2),画出平移后的△A2B2C2并写出点B2、C2的坐标; (3)△A1B1C1与△A2B2C2成中心对称,写出其对称中心的坐标.
计算:.
解方程:.
探究:已知平行四边形ABCD的面积为100,M是AB所在直线上的一点 (1)如图1:当点M与B重合时,S△DCM =________; (2)如图2:当点M与B与A均不重合时,S△DCM =________ (3)如图3:当点M在AB(或BA)的延长线上时,S△DCM =________ 推广:平行四边形ABCD的面积为a,E、F为两边DC、BC延长线上两点,连接DF、AF、AE、BE.求出图4中阴影部分的面积,并简要说明理由 应用:如图5是某广场的一平行四边形绿地ABCD,PQ、MN分别平行DC、AD,PQ、MN交于O点,其中S四边形AM OP=300m2,S四边形MBQO=400m2,S四边形NCQO=700m2.现进行绿地改造,在绿地内部做一个三角形区域MQD,连接DM、QD、QM,(图中阴影部分)种植不同的花草,求三角形DMQ区域的面积.
将一张矩形纸条ABCD按如图所示沿折叠,若折叠∠FEC=64°. (1)求∠1的度数; (2)求证:△EFG是等腰三角形.