为提高学生的素质,学校决定开设一批选修课程,分别为“文学”、“艺术”、“竞赛”三类,这三类课程所含科目的个数分别占总数的,现有3名学生从中任选一个科目参加学习(互不影响),记为3人中选择的科目属于“文学”或“竞赛”的人数,求的分布列及期望。
已知关于的方程的两个根为,设函数. (1)判断在上的单调性; (2)若,证明.
已知直线过椭圆E:的右焦点,且与E相交于两点. (1)设(为原点),求点的轨迹方程; (2)若直线的倾斜角为,求的值.
如图,在四棱锥P—ABCD中,底面ABCD是正方形,侧面PAD是正三角形,且平面PAD⊥底面ABCD. (1)求证:AB⊥平面PAD (2)求直线PC与底面ABCD所成角的大小; (3)设AB=1,求点D到平面PBC的距离.
已知是数列的前项和,,且,其中. (1)求数列的通项公式;(2)计算的值.
在一次语文测试中,有一道把我国四大文学名著《水浒传》《三国演义》《西游记》《红楼梦》与它们的作者连线的题目,每连对一个得3分,连错不得分,一位同学该题得ξ分. (1)求该同学得分不少于6分的概率; (2)求ξ的分布列及数学期望.