为提高学生的素质,学校决定开设一批选修课程,分别为“文学”、“艺术”、“竞赛”三类,这三类课程所含科目的个数分别占总数的,现有3名学生从中任选一个科目参加学习(互不影响),记为3人中选择的科目属于“文学”或“竞赛”的人数,求的分布列及期望。
(本小题满分12分)某位同学进行寒假社会实践活动,为了对白天平均气温与某奶茶店的某种饮料销量之间的关系进行分析研究,他分别记录了1月11日至1月15日的白天平均气温(°C)与该小卖部的这种饮料销量(杯),得到如下数据:
(Ⅰ)若先从这五组数据中抽出2组,求抽出的2组数据恰好是相邻2天数据的概率;(Ⅱ)请根据所给五组数据,求出y关于x的线性回归方程;(Ⅲ)根据(Ⅱ)中所得的线性回归方程,若天气预报1月16日的白天平均气温7(°C),请预测该奶茶店这种饮料的销量.(参考公式:.)
(本小题满分12分)在中,角、、所对的边分别为、、,且,.(Ⅰ)求角的大小;(Ⅱ)若,,求及的面积.
(本小题14分)已知函数在处的切线与直线垂直,函数.(Ⅰ)求实数的值;(Ⅱ)若函数存在单调递减区间,求实数的取值范围;(Ⅲ)设是函数的两个极值点,若,求的最小值.
(本小题13分)如图,分别过椭圆:左右焦点、的动直线相交于点,与椭圆分别交于不同四点,直线的斜率、、、满足.已知当轴重合时,,.(1)求椭圆的方程;(2)是否存在定点,使得为定值.若存在,求出点坐标并求出此定值,若不存在,说明理由.
(本小题12分)已知函数(均为正常数),设函数在处有极值.(1)若对任意的,不等式总成立,求实数的取值范围;(2)若函数在区间上单调递增,求实数的取值范围.