.已知为常数,,函数,且方程有等根.(1)求的解析式及值域;(2)设集合,,若,求实数的取值范围;(3)是否存在实数,使的定义域和值域分别为和?若存在,求出的值;若不存在,说明理由.
直三棱柱中,,,、分别为、的中点.(1)求证:;(2)求异面直线与所成角的余弦值.
如图,在四棱锥中,底面为直角梯形,,,平面底面,为的中点,是棱上的点,,,.(Ⅰ)求证:平面平面;(Ⅱ)若二面角为,设,试确定的值.
设函数.(1)若函数在时取得极小值,求的值;(2)若函数在定义域上是单调函数,求的取值范围.
某商厦欲在春节期间对某新上市商品开展促销活动,经测算该商品的销售量万件与促销费用万元满足.已知万件该商品的进价成本为万元,商品的销售价格定为元/件.(1)将该商品的利润万元表示为促销费用万元的函数;(2)促销费用投入多少万元时,商家的利润最大?最大利润为多少?
已知函数.(1)求曲线在点处的切线方程;(2)如果曲线的某一切线与直线垂直,求切点坐标与切线的方程.