在数列中,=1,,其中实数.(I) 求;(Ⅱ)猜想的通项公式, 并证明你的猜想.
(本小题满分14分)已知函数,(Ⅰ)若,求的单调区间;(Ⅱ)在(Ⅰ)的条件下,对,都有,求实数的取值范围;(Ⅲ)若在,上单调递增,在上单调递减,求实数的取值范围。
(本小题满分14分)已知函数,(Ⅰ)求函数的最大值和最小正周期;(Ⅱ)设的内角的对边分别且,,若,求的值.
(本小题满分12分)在直角坐标系中,已知,,为坐标原点,,.(Ⅰ)求的对称中心的坐标及其在区间上的单调递减区间;(Ⅱ)若,,求的值。
(本小题满分12分)已知集合,.(Ⅰ)求集合和集合;(Ⅱ)若,求的取值范围。
(本小题满分14分)已知数列是各项均不为的等差数列,公差为,为其前项和,且满足,.数列满足,为数列的前项和.(1)求、和;(2)若对任意的,不等式恒成立,求实数的取值范围;(3)是否存在正整数,使得成等比数列?若存在,求出所有的值;若不存在,请说明理由.