已知函数,其中,(1)若时,求的最大值及相应的的值;(2)是否存在实数,使得函数最大值是?若存在,求出对应的值;若不存在,试说明理由.
如图,在平面四边形ABCD中,已知,,现将四边形ABCD沿BD折起,使平面ABD平面BDC,设点F为棱AD的中点. (1)求证:DC平面ABC; (2)求直线与平面ACD所成角的余弦值.
已知数列的前项和为,且,数列满足,且. (Ⅰ)求数列、的通项公式; (Ⅱ)设,求数列的前项和.
中内角的对边分别为,已知,. (1)求的值;(2)若为中点,且的面积为,求的长度.
已知函数. (I) 当,求的最小值; (II) 若函数在区间上为增函数,求实数的取值范围; (III)过点恰好能作函数图象的两条切线,并且两切线的倾斜角互补,求实数的取值范围.
已知抛物线的焦点为,准线为,点为抛物线C上的一点,且的外接圆圆心到准线的距离为. (I)求抛物线C的方程; (II)若圆F的方程为,过点P作圆F的2条切线分别交轴于点,求面积的最小值时的值.