因式分解:(1);(2).
在平面直角坐标系xOy中,一次函数y=2x+2的图象与x轴交于A,与y轴交于点C,点B的坐标为(a,0),(其中a>0),直线l过动点M(0,m)(m≠0,2),且与x轴平行,并与直线AC、BC分别相交于点D、E,P点在y轴上(P点异于C点)满足PE=CE,直线PD与x轴交于点Q,连接PA.问:是否存在实数m,使CD•AQ=PQ•DE?若能,求出m的值(用含a的代数式表示);若不能,请说明理由.
在平面直角坐标系x、y中,过原点O及点A(0,2)、C(,0)作矩形OABC,点D在AB上,且AD=.点P从点O出发,以每秒2个单位长度的速度沿射线OD方向移动;同时点Q从点O出发,以每秒个单位长度的速度沿x轴正方向移动.设移动时间为t秒.已知过O、P、Q三点的抛物线解析式为(t>0).问是否存在某一时刻t,将△PQB绕某点旋转180°后,三个对应顶点恰好都落在上述抛物线上?若存在,求出t的值;若不存在,请说明理由.
如图,在平面直角坐标系中,直线AB与x轴,y轴分别交于点B(8,0),A(0,6),点C的坐标为(3,0),过点C作CE⊥AB于点E,点D为y轴上一动点,连结CD,DE,以CD,DE为边作□CDEF。是否存在点D,使□CDEF的顶点F恰好落在y轴上?若存在,求出点D的坐标;若不存在,请说明理由。
已知在直角坐标系中,A(0,2),F(-3,0),D为x轴上一动点,过点F作直线AD的垂线FB,交y轴于B,点C(2,)为定点,在点D移动的过程中,如果以A,B,C,D为顶点的四边形是梯形,则点D的坐标为_______________.
如图,在平面直角坐标系中有Rt△ABC,∠A=90°,AB=AC,A(-1,0)、B(-3,1)、C(0,2)。将△ABC沿x轴的反方向平移,在第二象限内B、C两点的对应点B′、C′正好落在反比例函数的图像上,直线B′C′交y轴于点G。问是否存在x轴上的点M和反比例函数图像上的点P,使得四边形PGMC′是平行四边形。如果存在,请求出点M和点P的坐标;如果不存在,请说明理由。