已知函数,(1)若曲线与曲线在它们的交点(1,c)处具有公共切线,求,的值;(2)当,时,若函数在区间[,2]上的最大值为28,求的取值范围.
已知向量与向量的夹角为,在中,所对的边分别为且.(两题改编成)(I)求角B的大小;(Ⅱ)若是和的等比中项,求的面积。
(本小题满分14分)已知数列满足某同学欲求的通项公式,他想,如能找到一个函数,把递推关系变成后,就容易求出的通项了.(Ⅰ)请问:他设想的存在吗?的通项公式是什么?(Ⅱ)记,若不等式对任意都成立,求实数的取值范围.
已知焦点在轴上,中心在坐标原点的椭圆C的离心率为,且过点(题干自编)(I)求椭圆C的方程;(II)直线分别切椭圆C与圆(其中)于两点,求的最大值。
已知函数(I)若函数在上是减函数,求实数的取值范围;(II)令,是否存在实数,当(是自然常数)时,函数的最小值是3若存在,求出的值;若不存在,说明理由;(改编)(Ⅲ)当时,证明:.
在正四棱柱中,,为的中点.求证:(I)∥平面; (II)平面;(自编)(Ⅲ)若E为上的动点,试确定点的位置使直线与平面所成角的余弦值是.