给定椭圆C:+=1(a>b>0),称圆心在原点O,半径为的圆是椭圆C的“准圆”.若椭圆C的一个焦点为F(,0),且其短轴上的一个端点到F的距离为.(Ⅰ)求椭圆C的方程和其“准圆”方程;(Ⅱ)点P是椭圆C的“准圆”上的一个动点,过动点P作直线l1,l2,使得l1,l2与椭圆C都只有一个交点,试判断l1,l2是否垂直,并说明理由.
已知函数是定义在上的奇函数,且。 (1)求函数的解析式; (2)用单调性的定义证明在上是增函数; (3)解不等式。
商店出售茶壶和茶杯,茶壶单价为每个20元,茶杯单价为每个5元,该店推出两种促销优惠办法: (1)买1个茶壶赠送1个茶杯; (2)按总价打9.2折付款。 某顾客需要购买茶壶4个,茶杯若干个,(不少于4个),若设购买茶杯数为x个,付款数为y(元),试分别建立两种优惠办法中y与x之间的函数关系式,并讨论该顾客买同样多的茶杯时,两种办法哪一种更省钱?
已知},,若,求实数的取值集合。
设,, 求:(1);(2)。
已知椭圆C:(a>b>0)的一个顶点为A(2,0),离心率为,直线y=k(x-1)与椭圆C交于不同的两点M、N. ①求椭圆C的方程. ②当⊿AMN的面积为时,求k的值.