(本题满分12分) 为了了解某中学学生的体能情况,体育组决定抽样三个年级部分学生进行跳绳测试,并将所得的数据整理后画出频率分布直方图(如图5).已知图中从左到右的前三个小组的频率分别是0.1,0.3,0.4,第一小组的频数是5. (1) 求第四小组的频率和参加这次测试的学生人数; (2) 在这次测试中,学生跳绳次数的中位数落在第几小组内? (3) 参加这次测试跳绳次数在100次以上为优秀,试估计该校此年级跳绳成绩的优秀率是多少?
(本小题满分14分)设二次函数满足下列条件: ①当∈R时,的最小值为0,且f (-1)=f(--1)成立; ②当∈(0,5)时,≤≤2+1恒成立。 (1)求的值; (2)求的解析式; (3)求最大的实数m(m>1),使得存在实数t,只要当∈时,就有成立。
(本小题满分13分) 某出版公司为一本畅销书定价如下:.这里n表示定购书 的数量,C(n)是定购n本书所付的钱数(单位:元) (1)有多少个n,会出现买多于n本书比恰好买n本书所花钱少? (2)若一本书的成本价是5元,现有两人来买书,每人至少买1本,两人共买60本,问出版公司至少能赚多少钱?最多能赚多少钱?
(本题满分12分) 已知函数的图象与函数的图象关于点A (0,1)对称.(1)求函数的解析式(2)若=+,且在区间(0, 上的值不小于,求实数的取值范围.
(本小题满分12分)函数的定义域为(为实数). (1)当时,求函数的值域; (2)若函数在定义域上是减函数,求的取值范围; (3)函数在上的最大值及最小值,并求出函数取最值时的值.
(本题满分12分) 已知的反函数为,. (1)若,求的取值范围D; (2)设函数,当时,求函数的值域.