如图,由y=0,x=8,y=x2围成的曲边三角形,在曲线弧OB上求一点M,使得过M所作的y=x2的切线PQ与OA,AB围成的三角形PQA面积最大。
(本小题满分12分) 已知等腰直角三角形,其中∠=90º,.点、分别是、的中点,现将△沿着边折起到△位置,使⊥,连结、. (Ⅰ)求证:⊥; (Ⅱ)求二面角的余弦值.
(本小题满分12分)某赛季,甲、乙两名篮球运动员都参加了7场比赛,他们所有比赛得分的情况用如图所示的茎叶图表示.(Ⅰ)求甲、乙两名运动员得分的中位数;(Ⅱ)你认为哪位运动员的成绩更稳定?(Ⅲ)如果从甲、乙两位运动员的7场得分中各随机抽取一场的得分,求甲的得分大于乙的得分的概率.
(本小题满分12分)已知函数的最小正周期为. (Ⅰ)求;(Ⅱ)当时,求函数的值域.
函数的定义域为(0,1](为实数).⑴当时,求函数的值域;⑵若函数在定义域上是减函数,求的取值范围;⑶求函数在x∈(0,1]上的最大值及最小值,并求出函数取最值时的值.
已知命题:方程在[-1,1]上有解;命题:只有一个实数满足不等式,若命题“p或q”是假命题,求实数a的取值范围.