已知二次函数为常数);.若直线l1、l2与函数f(x)的图象以及l1,y轴与函数f(x)的图象所围成的封闭图形如阴影所示.(Ⅰ)求a、b、c的值;(Ⅱ)求阴影面积S关于t的函数S(t)的解析式;(Ⅲ)若问是否存在实数m,使得y=f(x)的图象与y=g(x)的图象有且只有两个不同的交点?若存在,求出m的值;若不存在,说明理由.
(本小题满分14分)如图所示,已知圆C与y轴相切于点T(0,2),与x轴正半轴相交于两点M,N(点M在点N的右侧),且|MN|=3,已知椭圆D:+=1(a>b>0)的焦距等于2|ON|,且过点(,). (1)求圆C和椭圆D的方程; (2)若过点M斜率不为零的直线l与椭圆D交于A、B两点,求证:直线NA与直线NB的倾斜角互补.
(本小题满分13分)已知数列的前项和为,且=,数列中,,点在直线上. (1)求数列的通项和; (2)设,求数列的前n项和,并求满足的最大正整数.
(本小题满分12分)已知函数(R). (1)若,求曲线在点处的切线方程; (2)设函数.若至少存在一个,使得成立,求实数的取值范围.
(本小题满分12分)如图,四棱锥中,是正三角形,四边形是矩形,且面面,,. (Ⅰ)若点是的中点,求证:面; (Ⅱ)若点在线段上,且,求三棱锥的体积.
(本小题满分12分)在中,已知,. (1)求与的值; (2)若角,,的对边分别为,,,且,求,的值.