已知,点A(s,f(s)), B(t,f(t)) (I) 若,求函数的单调递增区间; (II)若函数的导函数满足:当|x|≤1时,有||≤恒成立,求函数的解析表达式;(III)若0<a<b, 函数在和处取得极值,且,证明:与不可能垂直.
如图,已知正方形和矩形所在的平面互相垂直,,,是线段的中点.(1)求三棱锥的体积;(2)求与平面所成的角大小.
选修4-5:不等式选讲已知,不等式f(x)<4的解集为M.(1)求M;(2)当时,证明:.
选修4-4:坐标系与参数方程在平面直角坐标系xOy中,直线l的参数方程为(t为参数),直线l与曲线交于A,B两点.(1)求的长;(2)在以O为极点,x轴的正半轴为极轴建立极坐标系,设点P的极坐标为,求点P到线段AB中点M的距离.
选修4-1:几何证明选讲如图,正方形ABCD边长为2,以D为圆心,DA为半径的圆弧与以BC为直径的半圆O交于点F,连接CF并延长交AB于点E.(1)求证:AE=EB;(2)求的值.
已知函数.(1)若x=2是函数f(x)的极值点,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)若函数f(x)在上为单调增函数,求a的取值范围;(3)设m,n为正实数,且m>n,求证:.