一边长为的正方形铁片,铁片的四角截去四个边长均为的小正方形,然后做成一个无盖方盒。(1)试把方盒的容积表示为的函数;(2)多大时,方盒的容积最大?
函数的最小正周期为,其图像经过点 (1)求的解析式; (2)若且为锐角,求的值.
已知函数 (Ⅰ)若在上为增函数,求实数的取值范围; (Ⅱ)当时,方程有实根,求实数的最大值.
已知函数. (1)若函数在处取得极值,且函数只有一个零点,求的取值范围. (2)若函数在区间上不是单调函数,求的取值范围.
统计表明:某种型号的汽车在匀速行驶中每小时的耗油量(升)关于行驶速度(千米/每小时)的函数解析式可以表示为,已知甲、乙两地相距100千米. (1)当汽车以40千米/小时的速度行驶时,从甲地到乙地要耗油多少升? (2)当汽车以多大速度行驶时,从甲地到乙地耗油最少?最少为多少升?
已知是定义在上的奇函数,且,若,有恒成立. (1)判断在上是增函数还是减函数,并证明你的结论; (2)若对所有恒成立,求实数的取值范围。