一边长为的正方形铁片,铁片的四角截去四个边长均为的小正方形,然后做成一个无盖方盒。(1)试把方盒的容积表示为的函数;(2)多大时,方盒的容积最大?
为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层。某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元。该建筑物每年的能源消耗费用 C (单位:万元)与隔热层厚度 x (单位: c m )满足关系: C x = k 3 x + 5 0 ≤ x ≤ 10 .若不建隔热层,每年能源消耗费用为8万元。设 f x 为隔热层建造费用与20年的能源消耗费用之和。 (Ⅰ)求 k 的值及 f x 的表达式。 (Ⅱ)隔热层修建多厚时,总费用 f x 达到最小,并求最小值。
已知函数 (Ⅰ)求函数的最小正周期; (Ⅱ)求函数的最大值,并求使取得最大值的的集合。
(本小题满分15分)已知 (Ⅰ)求的表达式; (Ⅱ)定义正数数列,证明:数列是等比数列;
20070212
(Ⅲ)令成立的最小n值.
已知函数的一个极值点.(Ⅰ)求;(Ⅱ)求函数的单调区间;(Ⅲ)若的图象与x轴有且只有3个交点,求b的取值范围.
如图,四棱锥P-ABCD的底面是正方形,PA⊥底面ABCD,PA=2,∠PDA=45°,点E、F分别为棱AB、PD的中点.(Ⅰ)求证:AF∥平面PCE;(Ⅱ)求证:平面PCE⊥平面PCD;(Ⅲ)求三棱锥C-BEP的体积.