一边长为的正方形铁片,铁片的四角截去四个边长均为的小正方形,然后做成一个无盖方盒。(1)试把方盒的容积表示为的函数;(2)多大时,方盒的容积最大?
(本小题满分10分) 设数列的前n项和为,为等比数列,且 (1)求数列和的通项公式; (2)设,求数列的前n项和Tn.
(本小题满分10分)已知不等式. (1)当时解此不等式; (2)若对于任意的实数,此不等式恒成立,求实数的取值范围。
已知函数. (Ⅰ)当时,求函数的极值; (Ⅱ)若函数在定义域上没有零点,求实数的取值范围.
投资商到一开发区投资72万元建起一座蔬菜加工厂,经营中,第一年支出12万元,以后每年支出增加4万元,从第一年起每年蔬菜销售收入50万元,设表示前n年的纯利润总和(前年总收入 前年的总支出 投资额72万元) (Ⅰ)该厂从第几年开始盈利? (Ⅱ)该厂第几年平均纯利润达到最大?并求出年平均纯利润的最大值.
“坐标法”是以坐标系为桥梁,把几何问题转化成代数问题,通过代数运算研究图形的几何性质的方法,它是解析几何中是基本的研究方法. 请用坐标法证明下面问题: 已知圆O的方程是,点,P、Q是圆O上异于A的两点.证明:弦PQ是圆O直径的充分必要条件是.