设函数f(x)=lnx-ax+-1.
(1) 当a=1时, 过原点的直线与函数f(x)的图象相切于点P, 求点P的坐标;
(2) 当0<a<时, 求函数f(x)的单调区间;
(3) 当a=时, 设函数g(x)=x2-2bx-, 若对于x1∈, [0, 1]使f(x1)≥g(x2)成立, 求实数b的取值范围.(e是自然对数的底, e<+1).
相关知识点
推荐套卷
设函数f(x)=lnx-ax+-1.
(1) 当a=1时, 过原点的直线与函数f(x)的图象相切于点P, 求点P的坐标;
(2) 当0<a<时, 求函数f(x)的单调区间;
(3) 当a=时, 设函数g(x)=x2-2bx-, 若对于x1∈, [0, 1]使f(x1)≥g(x2)成立, 求实数b的取值范围.(e是自然对数的底, e<+1).