如图, 三棱柱ABC—A1B1C1的侧棱AA1⊥底面ABC, ∠ACB =" 90°," E是棱CC1上动点, F是AB中点, AC =" 1," BC =" 2," AA1 =" 4." (1) 当E是棱CC1中点时, 求证: CF∥平面AEB1; (2) 在棱CC1上是否存在点E, 使得二面角A—EB1—B的余弦值是, 若存在, 求CE的长, 若不存在, 请说明理由.
选修4-5:不等式选讲已知关于的不等式:的整数解有且仅有一个值为2.(1)求整数的值;(2)在(1)的条件下,解不等式:.
选修4-4:坐标系与参数方程已知曲线的极坐标方程是,曲线的参数方程是是参数).(1)写出曲线的直角坐标方程和曲线的普通方程;(2)求的取值范围,使得,没有公共点.
选修4-1:几何证明选讲如图所示,已知与⊙相切,为切点,为割线,弦,、相交于点,为上一点,且(1) 求证:;(2) (2)求证:·=·.
已知函数,(1)求为何值时,在上取得最大值;(2)设,若是单调递增函数,求的取值范围.
如图,已知椭圆的长轴为,过点的直线与轴垂直,直线所经过的定点恰好是椭圆的一个顶点,且椭圆的离心率(1)求椭圆的标准方程;(2)设是椭圆上异于、的任意一点,轴,为垂足,延长到点使得,连接并延长交直线于点,为的中点.试判断直线与以为直径的圆的位置关系.