如图, 三棱柱ABC—A1B1C1的侧棱AA1⊥底面ABC, ∠ACB =" 90°," E是棱CC1上动点, F是AB中点, AC =" 1," BC =" 2," AA1 =" 4." (1) 当E是棱CC1中点时, 求证: CF∥平面AEB1; (2) 在棱CC1上是否存在点E, 使得二面角A—EB1—B的余弦值是, 若存在, 求CE的长, 若不存在, 请说明理由.
已知椭圆:()的右焦点为,且椭圆过点. (1)求椭圆的方程; (2)设斜率为的直线与椭圆交于不同两点、,以线段为底边作等腰三角形,其中顶点的坐标为,求△的面积.
在如图所示的多面体中,四边形为正方形,四边形是直角梯形,,平面,. (1)求证:平面; (2)求平面与平面所成的锐二面角的大小.
在△中,角、、所对的边分别为、、,已知(),且. (1)当,时,求,的值; (2)若为锐角,求实数的取值范围.
已知,不等式的解集为. (1)求的值; (2)若对一切实数恒成立,求实数的取值范围.
已知曲线的参数方程是(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程是. (1)写出的极坐标方程和的直角坐标方程; (2)已知点、的极坐标分别是、,直线与曲线相交于、两点,射线与曲线相交于点,射线与曲线相交于点,求的值.