在极坐标中,已知圆经过点,圆心为直线与极轴的交点,求圆的极坐标方程.
如图甲,在平面四边形ABCD中,已知,,现将四边形ABCD沿BD折起,使平面ABD平面BDC(如图乙),设点E、F分别为棱AC、AD的中点. (Ⅰ)求证:DC平面ABC; (Ⅱ)设,求三棱锥A-BFE的体积.
已知向量,函数,且图象上一个最高点的坐标为,与之相邻的一个最低点的坐标为. (1)求的解析式; (2)在△ABC中,是角A、B、C所对的边,且满足,求角B的大 小以及的取值范围.
在一个盒子中,放有大小相同的红、白、黄三个小球,现从中任意摸出一球,若是红球记1分,白球记2分,黄球记3分.现从这个盒子中有放回地先后摸出两球,所得分数分别记为、,设为坐标原点,点的坐标为,记. (1)求随机变量=5的概率; (2)求随机变量的分布列和数学期望.
在如图所示的几何体中,四边形是菱形,是矩形,平面⊥平面,,,,是的中点. (Ⅰ) 求证://平面; (Ⅱ) 在线段上是否存在点,使二面角的大小为?若存在,求出的长;若不存在,请说明理由.
已知椭圆:的右焦点在圆上,直线交椭圆于、两点. (Ⅰ) 求椭圆的方程; (Ⅱ) 若OM⊥ON(为坐标原点),求的值; (Ⅲ) 设点关于轴的对称点为(与不重合),且直线与轴交于点,试问的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.