设函数。(1)当a=l时,求函数的极值;(2)当a2时,讨论函数的单调性;(3)若对任意a∈(2,3)及任意x1,x2∈[1,2],恒有成立,求实数m的取值范围。
(本小题满分14分) 某市拟在长为的道路OP的一侧修建一条运动赛道,赛道的前一部分为曲线段OSM,该曲线段为函数,的图象,且图象的最高点为;赛道的后一部分为折线段MNP。为保证参赛运动员的安全,限定. (1)求的值和M、P两点间的距离; (2)应如何设计,才能使折线段赛道MNP最长。
(本小题满分14分) 在数列中,且满足. (1)求数列的通项公式; (2)设求.
(本小题满分12分)已知数列的前项和 (1)求; (2)求证:数列是等比数列。
(本小题满分12分)已知,. (1)求的值; (2)求的值.
已知函数的一系列对应值如下表:
(1)根据表格提供的数据求函数的一个解析式; (2)根据(1)的结果,若函数周期为,当时,方程恰有两个不同的解,求实数的取值范围.