图是一个长为2,宽为2的长方形,沿图中虚线剪开,可分成四块小长方形.(1)求出图的长方形面积;(2)将四块小长方形拼成一个图的正方形.利用阴影部分面积的不同表示方法,直接写出代数式()2、()2、之间的等量关系;(3)把四块小长方形不重叠地放在一个长方形的内部(如图),未被覆盖的部分用阴影表示.求两块阴影部分的周长和(用含、的代数式表示).
先化简,再求值:,其中a=sin30°,b=tan45°
如图(1),直线与x轴交于点A、与y轴交于点D,以AD为腰,以x轴为底作等腰梯形ABCD(AB>CD),且等腰梯形的面积是8,抛物线经过等腰梯形的四个顶点.图(1)(1) 求抛物线的解析式;(2) 如图(2)若点P为BC上的—个动点(与B、C不重合),以P为圆心,BP长为半径作圆,与轴的另一个交点为E,作EF⊥AD,垂足为F,请判断EF与⊙P的位置关系,并给以证明;图(2)(3) 在(2)的条件下,是否存在点P,使⊙P与y轴相切,如果存在,请求出点P的坐标;如果不存在,请说明理由.
如图,在△ABC中,已知AB=BC=AC=4cm,于D,点P、Q分别从B、C两点同时出发,其中点P沿BC向终点C运动,速度为1cm/s,点Q沿CA,AB向终点B运动,速度为2cm/s,设它们运动的时间为t(s),(1)求t为何值时,;(2)当时,求证:AD平分△PQD的面积;(3)当时,求△PQD面积的最大值.
如图,在△ABC中,∠ACB=90°,AC=BC,延长AB至点D,使DB=AB,连接CD,以CD为直角边作等腰三角形CDE,其中∠DCE=90°,连接BE.(1)求证:△ACD≌△BCE;(2)若AC=3cm,求DE的长.
莲花山公园管理处计划购买甲、乙两种花木共6000株,甲种花木每株0.5元,乙种花木每株0.8元.相关资料表明:甲、乙两种花木的成活率分别为90%和95%.(1)若购买这批花木共用了3600元,求甲、乙两种花木各购买了多少株?(2)若要使这批花木的成活率不低于93%,且购买花木的总费用最低,应如何选购花木?