图是一个长为2,宽为2的长方形,沿图中虚线剪开,可分成四块小长方形.(1)求出图的长方形面积;(2)将四块小长方形拼成一个图的正方形.利用阴影部分面积的不同表示方法,直接写出代数式()2、()2、之间的等量关系;(3)把四块小长方形不重叠地放在一个长方形的内部(如图),未被覆盖的部分用阴影表示.求两块阴影部分的周长和(用含、的代数式表示).
如图(7),已知线段a和b,求作一个直角三角形,使它的两条直角边分别等于线段a和b.(不要求写作法,但要保留作图痕迹。)
解方程=
化简
等腰直角△ABC和⊙O如图放置,已知AB=BC=1,∠ABC=90°,⊙O的半径为1,圆心O与直线AB的距离为5.现△ABC以每秒2个单位的速度向右移动,同时△ABC的边长AB、BC又以每秒0.5个单位沿BA、BC方向增大.⑴ 当△ABC的边(BC边除外)与圆第一次相切时,点B移动了多少距离?⑵ 若在△ABC移动的同时,⊙O也以每秒1个单位的速度向右移动,则△ABC从开始移动,到它的边与圆最后一次相切,一共经过了多少时间?⑶ 在⑵的条件下,是否存在某一时刻,△ABC各边刚好与⊙O都相切?若存在,求出刚好符合条件时两个图形移动了多少时间?若不存在,能否改变AB、BC沿BA、BC方向的速度,使△ABC各边刚好与⊙O都相切.
如图,在平面直角坐标中,边长为2的正方形的两顶点、分别在轴、轴的正半轴上,点在原点.现将正方形绕点顺时针旋转,旋转角为θ,当点第一次落在直线上时停止旋转.旋转过程中,边交直线于点,边交轴于点.(1)当点第一次落在直线上时,求A、B两点坐标(直接写出结果);(2)设的周长为,在旋转正方形的过程中,值是否有变化?请证明你的结论.