设=(-1,1),=(x,3),=(5,y),=(8,6),且∥,(4+)⊥.(1)求和;(2)求在方向上的射影;(3)求λ1和λ2,使=λ1+λ2.
(本小题满分14分) 如图,三棱柱中,侧面底面,, 且,O为中点. (Ⅰ)证明:平面; (Ⅱ)求直线与平面所成角的正弦值; (Ⅲ)在上是否存在一点,使得平面,若不存在,说明理由;若存在, 确定点的位置.
(本小题满分14分) 某人上楼梯,每步上一阶的概率为,每步上二阶的概率,设该人从台阶下的平台开始出发,到达第n阶的概率为Pn. (I)求P2; (II)该人共走了5,求该人这5步共上的阶数x的数学期望.
(本小题满分14分) 已知A、B是直线图像的两个相邻交点,且 (I)求的值; (II)在锐角中,a,b,c分别是角A,B,C的对边,若 的面积为,求a的值.
若由数列“Z数列” (1)在数列,试判断数列是否为“Z数列”; (2)若数列是“Z数列”,; (3)若数列是“Z数列”,设。
已知抛物线和点M(2,2),若抛物线L上存在不同的两点A、B满足。 (1)求实数p的取值范围; (2)当时,抛物线L上是否存在异于A、B的点C,使得经过A、B、C三点的圆和抛物线L在点C处有相同的切线?若存在,求出点C的坐标;若不存在,请说明理由。