设函数(Ⅰ) 当时,求函数的极值;(Ⅱ)当时,讨论函数的单调性.(Ⅲ)若对任意及任意,恒有 成立,求实数的取值范围.
已知 (1)若∥,求的坐标 (2)若
为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如下图),图中从左到右各小长方形面积之比为2:4:17:15:9:3,第二小组频数为12. (1)第二小组的频率是多少?样本容量是多少? (2)若次数在110以上(含110次)为达标,试估计该学校全体高一的学生达标的概率 (3)为了分析学生的体能与身高,体重等方面的关系,必须再从样本中按分层抽样方法抽出50人作进一步分析,则体能在[120,130)的这段应抽多少人?
(1)化简: (2)求值:
在以O为原点的直角坐标系中,点A(4,-3)为△OAB的直角顶点.已知|AB|=2|OA|,且点B的纵坐标大于零. (1)求向量的坐标; (2)求圆关于直线OB对称的圆的方程; (3)是否存在实数a,使函数的图像上总有关于直线OB对称的两个点?若不存在,说明理由:若存在,求a的取值范围.
(题满分12) 已知 (1)化简;(2)若,求的值.[