某校组织学生书法比赛,对参赛作品按A、B、C、D四个等级进行了评定.现随机抽取部分学生书法作品的评定结果进行分析,并绘制扇形统计图和条形统计图如下:根据上述信息完成下列问题:(1)在这次抽样调查中,共抽查了多少名学生?(2)请在图②中把条形统计图补充完整;(3)求出扇形统计图中“D级”部分所对应的扇形圆心角的大小;(4)已知该校这次活动共收到参赛作品750份,请你估计参赛作品达到B级以上(即A级和B级)有多少份?
先化简,再求值:(每小题6分,共12分) (1),其中x =" –" 2; (2),其中
计算:(每小题6分,共24分) (1) (2) (3) (4)
(9分) 如图①,E、F分别为线段AC上的两个动点,且DE⊥AC于E, BF⊥AC于F,若AB=CD,AF=CE,BD交AC于点M。 (1)求证:MB=MD,ME=MF (2)当E、F两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由。
如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时, (1)写出图中一对全等的三角形,并写出它们的所有对应角; (2)设的度数为x,∠的度数为,那么∠1,∠2的度数分别是多少?(用含有x或y的代数式表示) (3)∠A与∠1+∠2之间有一种数量关系始终保持不变,请找出这个规律.
(7分)如图,D是△ABC的边AB上一点,DF交AC于点E,DE=FE,FC∥AB, 求证:AD=CF.