在中,已知(1)求证:(2)若求A的值.
设常数,函数若=4,求函数的反函数; 根据的不同取值,讨论函数的奇偶性,并说明理由.
底面边长为2的正三棱锥,其表面展开图是三角形,如图,求△的各边长及此三棱锥的体积.
设函数. (1)当(为自然对数的底数)时,求的最小值; (2)讨论函数零点的个数; (3)若对任意恒成立,求的取值范围.
已知椭圆经过点,离心率为,左右焦点分别为. (1)求椭圆的方程; (2)若直线与椭圆交于两点,与以为直径的圆交于两点,且满足,求直线的方程.
某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:
(1)若每辆车的投保金额均为2800元,估计赔付金额大于投保金额的概率; (2)在样本车辆中,车主是新司机的占10℅,在赔付金额为4000元的样本车辆中,车主是新司机的占20℅,估计在已投保车辆中,新司机获赔金额为4000元的概率.