函数.(1)求函数的最小正周期;(2)当时,求函数的取值范围.
(本小题12分)已知两条直线,,当为何值时直线与分别有下列关系? (1) ⊥; (2)∥
(本小题10分)已知的三个顶点、、,求 (1)边所在直线的一般式方程. (2)边上的高所在的直线的一般式方程.
已知函数在上为增函数,函数在上为减函数. (1)分别求出函数和的导函数; (2)求实数的值; (3)求证:当时,
一艘小船在航行中的燃料费和它的速度的立方成正比。已知在速度为每小时10公里时的燃料费是每小时6元,而其他与速度无关的费用是每小时96元。问:此船以多大的速度航行时,能使每公里的费用最少?
已知:椭圆C的中心在原点,焦点在轴上,焦距为8,且经过点(0,3) (1)求此椭圆的方程 若已知直线,问:椭圆C上是否存在一点,使它到直线的距离最小?最小距离是多少?