设的内角所对的边长分别为,且.(1)求角的大小; (2)若角,边上的中线的长为,求的面积.
已知圆经过椭圆的右焦点和上顶点.(1)求椭圆的方程;(2)过原点的射线与椭圆在第一象限的交点为,与圆的交点为,为的中点,求的最大值.
如图1,直角梯形中,,,,点为线段上异于的点,且,沿将面折起,使平面平面,如图2.(1)求证:平面;(2)当三棱锥体积最大时,求平面与平面所成的锐二面角的余弦值.
已知函数.(1)求函数的单调递增区间;(2)若是的三个内角,且,,又,求边的长.
已知,且,的最小值为.(1)求的值;(2)解关于的不等式.
对于定义域为的函数,若同时满足:①在内单调递增或单调递减;②存在区间[],使在上的值域为;那么把函数()叫做闭函数.(1) 求闭函数符合条件②的区间;(2) 若是闭函数,求实数的取值范围.