已知的面积为2,且.(1)求tanA的值;(2)求的值.
(本小题满分12分)已知等比数列项的和为 的值。
(本小题满分12分)在中,角所对的边分别为且满足(I)求角的大小;(II)求的最大值,并求取得最大值时角的大小.
(本小题满分10分)已知函数(1)求;(2)求过点A(0,16)的曲线的切线方程。
(本小题满分12分)已知椭圆的中心在坐标原点O,长轴长为2,离心率e=,过右焦点F的直线l交椭圆于P、Q两点.(Ⅰ)求椭圆的方程;(Ⅱ)若OP、OQ为邻边的平行四边形是矩形,求满足该条件的直线l的方程.
(本小题满分12分)设递增等比数列{}的前n项和为,且=3,=13,数列{}满足=,点P(,)在直线x-y+2=0上,n∈N﹡.(Ⅰ)求数列{},{}的通项公式;(Ⅱ)设=,数列{}的前n项和,若>2a-1恒成立(n∈N﹡),求实数a的取值范围.