如图,是棱长为的正方体,、分别是棱、上的动点,且.(1)求证:;(2)当、、、共面时,求:面与面所成二面角的余弦值.
如图,在四棱锥P-ABCD中,四边形ABCD是矩形,侧面PAD⊥底面ABCD,若点E,F分别是PC,BD的中点。 (1)求证:EF∥平面PAD; (2)求证:平面PAD⊥平面PCD
已知两条直线与的交点,求:(1)过点且过原点的直线方程;(2)过点且垂直于直线的直线的方程。
直三棱柱是的中点. (Ⅰ)求证:; (Ⅱ)求证:.
如图所示,已知圆为圆上一动点,点在上,点在上,且满足的轨迹为曲线. (1)求曲线的方程; (2)若直线与(1)中所求点的轨迹交于不同两点是坐标原点,且,求△的面积的取值范围.
【改编】如图,在边长为1的等边三角形中,分别是边上的点,,是的中点,与交于点,将沿折起,使得平面平面,得到如图所示的三棱锥. (1)证明://平面; (2)证明:平面; (3)当时,求三棱锥的体积.