A、B是单位圆O上的动点,且A、B分别在第一、二象限.C是圆O与x轴正半轴的交点,△AOB为正三角形.记∠AOC=α.(1)若A点的坐标为,求的值;(2)求的取值范围.
.某工厂制造甲、乙两种产品,已知制造甲产品1 kg要用煤9吨,电力4 kw,劳力(按工作日计算)3个;制造乙产品1 kg要用煤4吨,电力5 kw,劳力10个.又知制成甲产品1 kg可获利7万元,制成乙产品1 kg可获利12万元,现在此工厂只有煤360吨,电力200 kw,劳力300个,在这种条件下应生产甲、乙两种产品各多少千克,才能获得最大经济效益?
已知圆C经过P(4,– 2),Q(– 1,3)两点,且在y轴上截得的线段长为,半径小于5.(1)求直线PQ与圆C的方程.(2)若直线l∥PQ,且l与圆C交于点A、B,,求直线l的方程.
.已知直线:和:。问为何值时,有:(1)∥?(2)⊥?
如图是总体的一样本频率分布直方图,且在[15,18内的频数为8,求(1)样本容量;(2)若在[12,15 内小矩形面积为,求在[12,15内的频数;(3)在(2)的条件下,求样本数据在[18,33内的频率并估计总体数据在[18,33内的频率.
如图,在△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分别是AC、AD上的动点,且==λ(0<λ<1).(1)判断EF与平面ABC的位置关系并给予证明;(2)是否存在λ,使得平面BEF⊥平面ACD,如果存在,求出λ的值,如果不存在,说明理由.