已知点,、、是平面直角坐标系上的三点,且、、成等差数列,公差为,.(1)若坐标为,,点在直线上时,求点的坐标;(2)已知圆的方程是,过点的直线交圆于两点,是圆上另外一点,求实数的取值范围;(3)若、、都在抛物线上,点的横坐标为,求证:线段的垂直平分线与轴的交点为一定点,并求该定点的坐标.
.已知函数在区间上的 最大值为2. (1)求常数的值; (2)在中,角,,所对的边是,,,若,,面积为.求边长.
(本题15分)已知曲线与曲线,设点是曲线上任意一点,直线与曲线交于、两点. (1)判断直线与曲线的位置关系; (2)以、两点为切点分别作曲线的切线,设两切线的交点为,求证:点到直线:与:距离的乘积为定值.
(本题15分)已知函数在上是增函数,在(0,1)上是减函数. (1)求、的表达式; (2)试判断关于的方程在根的个数.
(本题14分)在五棱锥P-ABCDE中,PA=AB=AE=2,PB=PE=,BC=DE=1,∠EAB=∠ABC=∠DEA=90°. (1)求证:PA⊥平面ABCDE; (2)求二面角A-PD-E平面角的余弦值.
(本题14分)已知数列中, (1)求证:数列与都是等比数列; (2) 若数列前的和为,令,求数列的最大项.