在平面直角坐标系中,已知抛物线的准线方程为,过点作抛物线的切线,切点为(异于点),直线过点与抛物线交于两点,,与直线交于点.(1)求抛物线的方程;(2)试问:的值是否为定值?若是,求出定值;若不是,说明理由.
设直线与抛物线所围成的图形面积为S,它们与直线围成的面积为T, 若U=S+T达到最小值,求值;并求此时平面图形绕轴一周所得旋转体的体积.
抛物线y=ax2+bx在第一象限内与直线x+y=4相切.此抛物线与x轴所围成的图形的面积记为S.求使S达到最大值的a、b值,并求Smax.
设y=f(x)是二次函数,方程f(x)=0有两个相等的实根,且f′(x)=2x+2.(1)求y=f(x)的表达式;(2)求y=f(x)的图象与两坐标轴所围成图形的面积.(3)若直线x=-t(0<t<1=把y=f(x)的图象与两坐标轴所围成图形的面积二等分,求t的值.
求曲线,及所围成的平面图形的面积.
汽车每小时54公里的速度行驶,到某处需要减速停车,设汽车以等减速度3米/秒刹车,问从开始刹车到停车,汽车走了多少公里?