已知二次函数。(1)若,求函数在区间上最大值;(2)关于的不等式在上恒成立,求实数的取值范围;(3)函数在上是增函数,求实数的取值范围。
如图,已知在四棱锥中,底面是矩形,平面,、分别是、的中点. (Ⅰ)求证:平面; (Ⅱ)若与平面所成角为,且,求点到平面的距离.
已知函数 (1)求的单调递增区间; (2)在中,内角A,B,C的对边分别为,已知,成等差数列,且,求边的值.
相关部门对跳水运动员进行达标定级考核,动作自选,并规定完成动作成绩在八分及以上的定为达标,成绩在九分及以上的定为一级运动员. 已知参加此次考核的共有56名运动员. (1)考核结束后,从参加考核的运动员中随机抽取了8人,发现这8人中有2人没有达标,有3人为一级运动员,据此请估计此次考核的达标率及被定为一级运动员的人数; (2)经过考核,决定从其中的A、B、C、D、E五名一级运动员中任选2名参加跳水比赛(这五位运动员每位被选中的可能性相同). 写出所有可能情况,并求运动员E被选中的概率.
已知等差数列的前项和为,. (1)求数列的通项公式; (2) 设,求数列的前项和.
对于函数若存在,使得成立,则称为的不动点. 已知 (1)当时,求函数的不动点; (2)若对任意实数,函数恒有两个相异的不动点,求的取值范围; (3)在(2)的条件下,若图象上、两点的横坐标是函数的不动点,且、两点关于直线对称,求的最小值.