已知函数.(1)若是偶函数,在定义域上恒成立,求实数的取值范围;(2)当时,令,问是否存在实数,使在上是减函数,在上是增函数?如果存在,求出的值;如果不存在,请说明理由.
某厂家拟对一商品举行促销活动,当该商品的售价为元时,全年的促销费用为万元;根据以往的销售经验,实施促销后的年销售量万件,其中4为常数.当该商品的售价为6元时,年销售量为49万件.(Ⅰ)求出的值;(Ⅱ)若每件该商品的成本为4元时,写出厂家销售该商品的年利润万元与售价元之间的关系;(Ⅲ)当该商品售价为多少元时,使厂家销售该商品所获年利润最大.
四棱锥P—ABCD中,ABCD为矩形,△PAD为等腰直角三角形,∠APD=90°,面PAD⊥面ABCD,且AB=1,AD=2,E、F分别为PC和BD的中点.(1)求证:EF∥面PAD;(2)求证:面PDC⊥面PAB;
口袋中装有质地大小完全相同的5个球,编号分别为1,2,3,4,5,甲、乙两人玩一种游戏:甲先摸一个球,记下编号,放回后乙再摸一个球,记下编号。如果两个编号的和为偶数就算甲胜,否则算乙胜。(1)求甲胜且编号和为6的事件发生的概率;(2)这种游戏规则公平吗?说明理由。
在等比数列中,,且,是和的等差中项.(I)求数列的通项公式;(II)若数列满足,求数列的前项和.
(本小题满分14分) 设函数.(1)求函数的最小值;(2)设,讨论函数的单调性;(3)斜率为的直线与曲线交于、两点,求证: