已知数列{an}是公差不为0的等差数列,a1=2,且a2,a3,a4+1成等比数列.(1)求数列{an}的通项公式;(2)设bn=an+2an,求数列{bn}的前n项和Sn.
设向量a=(4cosα,sinα),b=(sinβ,4cosβ),c=(cosβ,-4sinβ),(1)若a与b-2c垂直,求tan(α+β)的值;(2)求|b+c|的最大值.
已知函数 (1)求函数f(x)的最小正周期及单调递增区间;(2)在中,A、B、C分别为三边所对的角,若a=f(A)=1,求的最大值.
设两个非零向量、不共线(1)若,求证:A、B、D三点共线;(2)试确定实数k的值,使和共线.
(本小题满分12分)已知在中,内角的对边分别是,已知,.(Ⅰ)若的面积等于,求;(Ⅱ)若,求的面积.
(本小题满分12分)已知在ABC中,内角A,B,C的对边分别为.且.(Ⅰ)求的值;(Ⅱ)若=,b=2,求的面积S。