如图,已知椭圆C:+=1(a>b>0)的左、右焦点分别为F、F,A是椭圆C上的一点,AF⊥FF,O是坐标原点,OB垂直AF于B,且OF=3OB.(Ⅰ)求椭圆C的离心率;(Ⅱ)求t∈(0,b),使得命题“设圆x+y=t上任意点M(x,y)处的切线交椭圆C于Q、Q两点,那么OQ⊥OQ”成立.
已知关于的不等式的解集为. (1)当时,求集合; (2)当时,求实数的范围.
设函数,其中. (1)当时,求不等式的解集; (2)若不等式的解集为,求的值.
已知曲线的参数方程为(为参数),曲线的极坐标方程为. (1)将曲线的参数方程化为普通方程,将曲线的极坐标方程化为直角坐标方程; (2)曲线,是否相交,若相交请求出公共弦的长,若不相交,请说明理由.
如图,A,B,C,D四点在同一圆上,与的延长线交于点,点在的延长线上. (1)若,求的值; (2)若,证明:.
已知. (1)求函数的单调区间; (2)若关于的方程有实数解,求实数的取值范围; (3)当,时,求证:.