如图,已知ABCD是矩形,AB=a,AD=b,PA⊥平面ABCD,PA=2c,Q是PA的中点.求:(1)Q到BD的距离;(2)P到平面BQD的距
如图, A B 为 ⊙ O 直径,直线 C D 与 ⊙ O 相切于 E . A D 垂直于 C D 于 D , B C 垂直于 C D 于 C , E F 垂直于 F 连接 A E , B E 证明:
(1) ∠ F E B = ∠ C E B ;
(2) E F 2 = A D · B C .
已知函数 f ( x ) = ( 1 + x ) e - 2 x , g ( x ) = a x + x 3 2 + 1 + 2 x cos x .当 x ∈ 0 , 1 时,
(I)求证  1 - x ≤ f ( x ) ≤ 1 1 + x ;
(II)若 f ( x ) ≥ g ( x ) 恒成立,求实数 a 的取值范围.
如图,抛物线 C 1 : x 2 = 4 y , C 2 : x 2 = - 2 p y p > 0 ,点 M x 0 , y 0 在抛物线 C 2 上,过 M 作 C 1 的切线,切点为 A , B ( M 为原点 O 时, A , B 重合于 O ).当 x 0 = 1 - 2 时,切线 M A 的斜率为 - 1 2 .
(I)求 p 的值; (II)当 M 在 C 2 上运动时,求线段 A B 中点 N 的轨迹方程( A , B 重合于 O 时,中点为 O ).
现有10道题,其中6道甲类题,4道乙类题,张同学从中任取3道题解答. (I)求张同学至少取到1道乙类题的概率; (II)已知所取的3道题中有2道甲类题,1道乙类题.设张同学答对甲类题的概率都是 3 5 ,答对每道乙类题的概率都是 4 5 ,且各题答对与否相互独立.用 X 表示张同学答对题的个数,求 X 的分布列和数学期望.
如图, A B 是圆的直径, P A 垂直圆所在的平面, C 是圆上的点.
(I)求证平面 P A C ⊥ 平面 P B C ; (II)若 A B = 2 , A C = 1 , P A = 1 ,求证:二面角 C - P B - A 的余弦值.