(本小题满分14分)已知等差数列的前项和为,前项和为.1)求数列的通项公式2)设, 求数列的前项和.
(本小题满分14分)已知函数,且.(1)判断的奇偶性并说明理由; (2)判断在区间上的单调性,并证明你的结论;(3)若在区间上,不等式恒成立,试确定实数的取值范围.
(本小题满分14分)如图在底面是矩形的四棱锥P-ABCD中,PA⊥底面ABCD, E、F分别是PC、PD的中点,求证:(1)EF∥平面PAB;(2)平面PAD⊥平面PDC.
(本小题满分14分)已知集合A={︱3<≤7},B={x︱2<<10},C={︱<} ⑴ 求A∪B,(CuA)∩B⑵ 若A∩C≠,求a的取值范围
(本题满分13分)已知函数在上是减函数,在上是增函数,函数在上有三个零点.(1)求的值; (2)若1是其中一个零点,求的取值范围;(3)若,试问过点(2,5)可作多少条直线与曲线y=g(x)相切?请说明理由。
(本题满分13分)对于给定数列,如果存在实常数使得对于任意都成立,我们称数列是 “M类数列”.(1)若,,,数列、是否为“M类数列”?若是,指出它对应的实常数,若不是,请说明理由;(2)证明:若数列是“M类数列”,则数列也是“M类数列”;(3)若数列满足,,为常数.求数列前项的和.