(本小题满分14分)设椭圆与抛物线的焦点均在轴上,的中心和的顶点均为原点,从每条曲线上至少取两个点,将其坐标记录于下表中:
1)求,的标准方程, 并分别求出它们的离心率;2)设直线与椭圆交于不同的两点,且(其中坐标原点),请问是否存在这样的直线过抛物线的焦点若存在,求出直线的方程;若不存在,请说明理由.
已知命题:复数对应的点落在复平面的第二象限;命题:以为首项,公比为的等比数列的前项和极限为2.若命题“且”是假命题,“或”是真命题,求实数的取值范围.
1)设≤1,求一个正常数a,使得x≤; (2)设≤1,,求证:≤
如图:空间四边形中,点分别是的中点.设 (1)用表示向量. (2)若,且与、夹角的余弦值均为,与夹角为600,求
已知抛物线的顶点在坐标原点,焦点F在x轴的正半轴上,且F到抛物线的准线的距离为p. (1) 求出这个抛物线的方程; (2)若直线过抛物线的焦点F,交抛物线与A、B两点, 且="4p" ,求直线的方程.
如果双曲线与双曲线的焦点在同一坐标轴上且它们的虚轴长和实轴长的比值相等,则称他们为平行双曲线.已知双曲线M与双曲线为平行双曲线,且点(2,0)在双曲线M上. (1)求双曲线M的方程; (2) 设P是双曲线M上的任一点,点A的坐标为(3,0),求|PA|的最小值.