(本小题满分12分)已知函数的图象与轴分别相交于点, (分别是与轴正半轴同方向的单位向量),函数.(1)求的值;(2)当满足时,求函数的最小值.
已知向量a=(,cosωx),b=(sinωx,1),函数f(x)=a·b,且最小正周期为4π.(1)求ω的值.(2)设α,β∈,f=,f=-,求sin(α+β)的值.(3)若x∈[-π,π],求函数f(x)的值域.
已知平面向量a=(,-1),b=.(1)若x=(t+2)a+(t2-t-5)b,y=-ka+4b(t,k∈R),且x⊥y,求出k关于t的关系式k=f(t).(2)求函数k=f(t)在t∈(-2,2)上的最小值.
设a=(cosα,sinα),b=(cosβ,sinβ),若a-b=,θ为a与b的夹角.(1)求θ的值.(2)若f(x)=2sin(θ-x)cos(θ-x)+2sin2(θ-x),求f(x)的单调递增区间.
已知复平面内平行四边形ABCD(A,B,C,D按逆时针排列),A点对应的复数为2+i,向量对应的复数为1+2i,向量对应的复数为3-i.(1)求点C,D对应的复数.(2)求平行四边形ABCD的面积.
已知向量=,=,定义函数f(x)=·.(1)求函数f(x)的表达式,并指出其最大值和最小值.(2)在锐角△ABC中,角A,B,C的对边分别为a,b,c,且f(A)=1,bc=8,求△ABC的面积S.