如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BD相交于点N,连接BM,DN.(1)求证:四边形BMDN是菱形;(2)若AB=4,AD=8,求MD的长.
如图,要建造一个直角梯形的花圃.要求AD边靠墙,CD⊥AD,AB:CD=5:4,另外三边的和为20米.设AB的长为5x米.(1)请求出AD的长(用含字母x的式子表示);(2)若该花圃的面积为50米2,且周长不大于30米,求AB的长.
如图,抛物线y=﹣x2+4与x轴交于A、B两点,与y轴交于C点,点P是抛物线上的一个动点且在第一象限,过点P作x轴的垂线,垂足为D,交直线BC于点E.(1)求点A、B、C的坐标和直线BC的解析式;(2)求△ODE面积的最大值及相应的点E的坐标;(3)是否存在以点P、O、D为顶点的三角形与△OAC相似?若存在,请求出点P的坐标,若不存在,请说明理由.
如图,过正方形ABCD的顶点D作DE∥AC交BC的延长线于点E.(1)判断四边形ACED的形状,并说明理由;(2)若BD=8cm,求线段BE的长.
如图,正比例函数y1=x的图象与反比例函数(k≠0)的图象相交于A、B两点,点A的纵坐标为2.(1)求反比例函数的解析式;(2)求出点B的坐标,并根据函数图象,写出当y1>y2时,自变量x的取值范围.
如图,某山顶上建有手机信号中转塔AB,在地面D处测得塔尖的仰角∠ADC=60°,塔底的仰角∠BDC=45°,点D距塔AB的距离DC为100米,求手机信号中转塔AB的高度(结果保留根号).