已知:如图,D是△ABC的边AB上一点,CN∥AB,DN交AC于点M,MA=MC.(1)求证:CD=AN;(2)若∠AMD=2∠MCD,求证:四边形ADCN是矩形.
如图,一次函数的图象与反比例函数的图象交于A、B两点,其中A点坐标为(2,1).⑴试确定、的值;⑵求B点的坐标.
如图,PA与⊙O相切于A点,弦AB⊥OP,垂足为C,OP与⊙O相交于D点,已知OA=2,OP=4.⑴求∠POA的度数;⑵计算弦AB的长.
如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,Rt△ABC的顶点均在格点上,在建立平面直角坐标系以后,点A的坐标为(-6,1),点B的坐标为(-3,1),点C的坐标为(-3,3).(1)将Rt△ABC沿X轴正方向平移5个单位得到Rt△A1B1C1,试在图上画出Rt△A1B1C1的图形,并写出点A1的坐标。(2)将原来的Rt△ABC绕着点B顺时针旋转90°得到Rt△A2B2C2,试在图上画出Rt△A2B2C2的图形。
先化简,再求值 ,其中 = .
(8分)2010年湛江市某校为了了解400名学生体育加试成绩,从中抽取了部分学生的成绩(满分为40分,而且成绩均为整数),绘制了频数分布表与频数分布直方图(如图),请结合图表信息解答下列问题:(1)补全频数分布表与频数分布直方图;(2)如果成绩在31分以上(含31分)的同学属于优良请你估计全校约有多少人达到优良水平;(3)加试结束后,校长说:“2008年,初一测试时,优良人数只有90人,经过两年的努力,才有今天的成绩…….”假设每年优良人数增长速度一样,请你求出每年的平均增长率(结果精确到1%).