某开发商准备开发建设一幢住宅区,工程需填土104米3,某工程队承包了该项填土任务.(1)该工程队平均的填土量V(米3/天)与完成任务所需时间t(天)之间具有怎样的函数关系?(2)该工程队共有10辆运输车,每辆车每天运土100米3,若工程必须在20天内完成任务,问:工程队每天至少派多少辆车运土,才能完成任务?
把下列各数分别填入相应的大括号里: ﹣5.13, 5,﹣|﹣2|, +41, -, 0,-(+0.18), . 正数集合{}; 负数集合{}; 整数集合{}; 分数集合{}.
在如图所示的平面直角坐标系中,直线AB:y=k1x+b1与直线AD:y=k2x+b2相交于点A(1,3),且点B坐标为(0,2),直线AB交x轴负半轴于点C,直线AD交x轴正半轴于点D. (1)求直线AB的函数解析式; (2)根据图象直接回答,不等式k1x+b1<k2x+b2的解集; (3)若△ACD的面积为9,求直线AD的函数解析式; (4)若点M为x轴一动点,当点M在什么位置时,使AM+BM的值最小?求出此时点M的坐标.
已知:点O到△ABC的两边AB、AC所在直线的距离OE、OF相等,且OB=OC. (1)如图,若点O在边BC上,求证:AB=AC; (2)如图,若点O在△ABC的内部,则(1)中的结论还成立吗?若成立,请证明;若不成立,说明理由; (3)若点O在△ABC的外部,则(1)的结论还成立吗?请画图表示.
在一次运输任务中,一辆汽车将一批货物从甲地运往乙地,到达乙地卸货后返回.设汽车从甲地出发x(h)时,汽车与甲地的距离为y(km),y与x的函数关系如图所示.根据图象信息,解答下列问题: (1)这辆汽车的往、返速度是否相同?请说明理由; (2)求返程中y与x之间的函数表达式; (3)求这辆汽车从甲地出发4h时与甲地的距离.
给出三个多项式:x2+x-1,x2+3x+1,x2-x,请你写出所有其中两个多项式的加法运算,并把运算结果因式分解.