有6本不同的书,按照以下要求处理,各有多少种不同的分法?(1)一堆一本,一堆两本,一堆三本;(2)甲得一本,乙得两本,丙得三本; (3)一人得一本,一人得二本,一人得三本;(4)平均分给甲、乙、丙三人;(5)平均分成三堆.
某同学参加语、数、外三门课程的考试,设该同学语、数、外取得优秀成绩的概率分别为,m,n(m>n),设该同学三门课程都取得优秀成绩的概率为,都未取得优秀成绩的概率为,且不同课程是否取得优秀成绩相互独立.(1)求m,n;(2)设X为该同学取得优秀成绩的课程门数,求EX.
如图,已知四棱锥的底面是正方形,侧棱底面,,是的中点.(1)证明平面;(2)求二面角的余弦值.
已知等差数列满足:.(Ⅰ)求数列的通项公式;(Ⅱ)若,求数列的前项和.
(本小题满分12分)如图,在平面直角坐标系中,点在单位圆上,,且.(1)若,求的值;(2)若也是单位圆上的点,且.过点分别做轴的垂线,垂足为,记的面积为,的面积为.设,求函数的最大值.
(本小题满分12分)已知,,且(1)求函数的解析式;(2)当时,的最小值是,求此时函数的最大值,并求出函数取得最大值时自变量的值