,其中
化简求值:,其中
如图: (1)在数轴上标出表示-、-b的点;(2) 0;b 0;││ │b│;-b 0(3)用“<”号把、b、0、-、-b连接起来.
如图9,边长为5的正方形的顶点在坐标原点处,点分别在轴、轴的正半轴上,点是边上的点(不与点重合),,且与正方形外角平分线交于点.(1)当点坐标为时,试证明;(2)如果将上述条件“点坐标为(3,0)”改为“点坐标为(,0)()”,结论是否仍然成立,请说明理由;(3)在轴上是否存在点,使得四边形是平行四边形?若存在,用表示点的坐标;若不存在,说明理由.
已知二次函数的图象经过和三点(1)若该函数图象顶点恰为点,写出此时的值及的最大值;(2)当时,确定这个二次函数的解析式,并判断此时是否有最大值;(3)由(1)、(2)可知,的取值变化,会影响该函数图象的开口方向.请你求出满足什么条件时,有最小值?
2010年6月4日,乌鲁木齐市政府通报了首府2009年环境质量公报,其中空气质量级别分布统计图如图8所示,请根据统计图解答以下问题:(1)写出2009年乌鲁木齐市全年三级轻度污染天数:(2)求出空气质量为二级所对应扇形圆心角的度数(结果保留到个位);(3)若到2012年,首府空气质量良好(二级及二级以上)的天数与全年天数(2012年是闰年,全年有366天)之比超过85%,求2012年空气质量良好的天数要比2009年至少增加多少天?