如图9,边长为5的正方形的顶点在坐标原点处,点分别在轴、轴的正半轴上,点是边上的点(不与点重合),,且与正方形外角平分线交于点.(1)当点坐标为时,试证明;(2)如果将上述条件“点坐标为(3,0)”改为“点坐标为(,0)()”,结论是否仍然成立,请说明理由;(3)在轴上是否存在点,使得四边形是平行四边形?若存在,用表示点的坐标;若不存在,说明理由.
在数轴上表示下列各数,并用“<”号连接:-(-5),-|-2.5|,-,.
如图,平面内有公共端点的6条射线O
(1)根据图中规律,表示“19”的点在射线 上; (2)按照图中规律推算,表示“2014”的点在射线 上; (3)请你写出在射线OC上表示的数的规律(用含的代数式表示) .
如图,⊙0的半径为10,点C为 的中点,过点C作弦CD∥OA,交OB于E.(1)当∠D=44°时,∠AOB=________°;(2)若已知AB=16,求弦CD的长;(3)当AB的长为多少时,△OED为直角三角形?请写出解答过程.
已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由; (2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.
水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤。通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤。为了保证每天至少售出260斤,张阿姨决定降价销售. 若将这种水果每斤的售价降低x元,则每天的销售量是 斤(用含x的代数式表示); (2)销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?