一公司面向社会招聘人员,要求如下:①对象:机械制造类和规划设计类人员共150名. ②机械类人员工资为人均600元/月,规划设计类人员为人均1000元/月. (1)本次招聘规划设计人员不少于机械制造人员的2倍,若要使公司每月所付工资总额最少,则这两类人员各招多少名?此时最少工资总额是多少?(2)在保证工资总额最少条件下,因这两类人员表现出色,公司领导决定另用20万元奖励他们,其中机械人员人均奖金不得超过规划人员的人均奖金,但不低于200元,试问规划设计类人员的人均奖金的取值范围?
已如图,反比例函数y=的图象与一次函数y=mx+b的图象交于两点A(1,3) ,B(n,-1).(1)求反比例函数与一次函数的函数关系式;(2)根据图象,直接回答:当x取何值时,一次函数的值大于反比例函数的值;答: (3) 连接AO、BO,求△ABO的面积;
某花农培育甲种花木2株,乙种花木3株,共需成本1700元;培育甲种花木3株,乙种花木1株,共需成本1500元. (1)求甲、乙两种花木每株成本分别为多少元; (2)据市场调研,1株甲种花木的售价为760元,1株乙种花木的售价为540元,该花农决定在成本不超过30000元的前提下培育甲乙两种花木,若培育乙种花木的株数是甲种花木的3倍还多10株,那么要使总利润不少于21600元,花农有哪几种具体的培育方案?
.已知关于x的方程x2﹣2(k﹣1)x+k2=0有两个实数根x1,x2.(1)求k的取值范围;(2)若|x1+x2|=x1x2﹣1,求k的值.
如图,点B、F、C、E在同一直线上,AC、DF相交于点G,AB⊥BE,垂足为B,DE⊥BE,垂足为E,且AB=DE,BF=CE.求证:(1)△ABC≌△DEF; (2)GF=GC.
解方程: